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MICROWAVE OPTICS III:  "FOCAL-PLANE PHASE DISTRIBUTION 

AFTER OFF-AXIS RE7LECTI0N BY A PARABOLOID, including the 

application of a technique for the reversion of 

double series." 

This report is divided into two sections.  In 
the first section, ve determine the normal 
rectilinear congruence generated by rays 
emanating from a point source near the focus 
of acd reflected by a paraboloid of revolu- 
tion. In the second and major section ve 
obtain the relative phase of the radiation 
on the focal plane and calculate the power 
series expansion of this "Relative Phase 
Function" to the third order in focal-plane- 
Cartesian coordinates. 

INTflODUCTION 

The following report covers a theoretical phase of the Antenna Labora- 
p 

tories' program of study of methods of producing a esc &    pattern with 

the FPS-5 paraboloid antenna. The related Antenna Laboratory Memoranda are: 

1. Spencer, Roy C: "Phase Errors of Reflector with 

Point Source Feed," 18 September 1951. 

2. Sletten, C. J.: "Some Proofs and Computations for 

Designing esc 9    Patterns with a Cut Para- 

boloid, " (including unpublished notes by 

F. S. Holt.) November 1951 - Pencil Memo. 

3. Hlatt, R. and F. Holt, "Conference on AN/PPS-3 Antenna" 

16 November 1951. 

^. 9p*ncer, R. C:  "Suamary of Conferences on Microwave 

Reflector Design (29 Nov. 1951)" - 50 November 1951. 

5. Sletten, C. J.: "Pattern Distortion in Parabolas 

Caused by Moving the Feed Away from the Focus," 

k December 1951. 
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6. Hiatt, Ralph E,: "AH/MPS-7." I? December 1951. 

7. Hiatt, Ralph E.: "AH/MPS-7," 2 January 1952. 

8. Sletten, C. J.: "Further Analysis of Feed Problem 

for FPS-3 Antenna," 2 January 1952. 

9. Sletten, C. J.: "Further Design Suggestions for 

Csc2g FPS-5," 2^ January 1952= 

The far field pattern of antenna is given by the expression, 

g(u,v) -  fa(x,y)e *«*>*  e ^^dxdy 

where Integration is carried out over an aperture and where, 

a(x,y) .». 

0(x,y) .-. 

g(u,v) .». 

U,T 

a'splitude distribution 
* 

phase distribution 

electric field intensities in direction (u,v) 

direction cosines 

Departure of 0(x,y) from a constant is known as phase error. 

C. J. Sletten; is memorandum So. 9, cited above, developed an approximate 

series expression for the phase distribution ^(x,y) in the aperture plane. 

In a joint conference between the Antenna Laboratory and the Parke Mathe- 

matical Laboratories, he emphasised the desirability of carrying out the 

series approximation more accurately. This suggestion met with the approval 

of Dr. Spencer as providing a problem of general importance to the research 

program of the laboratory as well as being of Immediate importance in con- 

nection vith the FPS-3 study. 

This report may be considered another in a series of reports on geo- 

metrical aspects of microwave optics.  The first section of the report 

1) T*o of the previous reports which are fundamental are: 
NoG.Parke: "Microwave Optics I: Rectilinear Congruences," 

Report PQ 50-5JtOU, November 5, 19^9. 
N.G. Parke:  "Microwave Optics II: Electromagnetic Aspects 

of the Focal Region," Report P0-51*0U, February 30, 1950. 
Other related reports have been prepared under contract AF 19(122)-U84. 
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develops an expression for the distance along any ray from the point source 

to the fecal plane as veil as an expression for the rectangular coordinates 

of the intersection of this ray with the focal plane. 

The mathematical difficulty arises from the fact that expressions for 

the phase and for the coordinates of intersection are parametric The 

parameters are polar coordinates to points on the paraboloid. What ve 

desire is the expression for the phase as a function of the coordinates of 

intersection. The three parametric expressions are too involved for a 

satisfactory elimination of the "paraboloid*!-coordinates." The second part 

of the report treats our method of working around this difficulty to obtain 

a double series expression for this phase function in terms of Cartesian 

coordinates In this focal plane. The method is of general applicability 

and interesting in itself. We carried out the series up to and including 

third order terms. 
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THE REPLBCTTJTC SURFACE (RKFERmCB SURFACE) 

A. THE jjggBB ^QUATIOffS OF THE COBORUBBCE OF REFLECTED RATS 

1. Parametric equations of the reflecting surface. 

The reflecting surface Is a paraboloid of revolution with the 
1 

x -axis as the axis of syaaetry. The radius of the paraboloid at 
2 3 

the (x ,xr)-plane will, be 2a, vhere a Is the distance froa ths 

vertex to the focus of the paraboloid. Further ve will take t   » 0 

as the focal point; then the paraaetric equations are given by 

** • afl*»*> 
X mpoOB& (1) 

where (x ,/),£) ere the cylindrical coordinates 

of a point on the paraboloid. 

The equation corresponding to paraaetric 
12 3 

equations (1) in teras of x ,x ,x , for the 

paraboloid is 

^-^t(*»f*(*»f-W*] (la) 

Fig.l. Para- 

aetric represen- 

tation of the 

Paraboloid 

2. The unit vector r in the direction of propagation of the iacoalng 

wave. 

The incoming rays are Issuing froa a point source located in the 

(x ,x )-plane at (e,d), say. Evidently we can obtain the vector froa 

(c,d) to the paraboloid as the difference between the vector from the 

origin (also the focus) to the paraboloid and the vector froa the 

origin to the point (e,d), that is (see Figure 2) 

i W : -t- ••- 
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?3 " Tl  " r2 (2) 

Slice 

i?, i 
(3) 

we have a simile way to obtain r 

So that with 

«• 

r. • (x ,/9eo8^sln0) 

?2 • (e#°»d)> 
CO 

Fig.2. Unit 

vector in tbe 

direction of _ 

iacoaing wave. 

ve lave from (2),  (3) and (4) 

r » (x' -€,/>eofl^y3sin^-d) 

^x' -e)1 • /fsowfe* ^*»inV ^^in/^dW1 
(5) 

or i.i terns of /}   and  £ alone 

/?*-4a* (' i — -e^cosfypain^-d) 

ifl^j^    -«)* +p*-2aBi*9&+&3 

(6) 

12    3 or 1: terns of the Cartesian coordinates x ,x ,x 

*, (x*-e.x*.x*-d) 

12    3 In (b1)  x ,x ,x    nisi satisfy (la). 

(6') 
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3. The expression for a, the unit sector noraal to the (inside) 

reflecting side of the paraboloid. 

Evidently a vector in the correct direction would be (eee 

Figure 3) 

[^.J^l; where [r^Tg] .». the vector 

product of .?, and r. in the 

Cans notation. And 

x .-. x1!, +x2it+x
5i3 ... (x\x

2,x5). 

Fig.3. The unit 

vector to the 

inside of the 

paraboloid. 

9o that 

(7) 

Kust be the unit vector required. Then since 

xP   " (£»coa*,ain<$ 

*e   • (O^sinfyscos^) 

a Bust be given by 

& 

2.1, la i» 
CO 8^ sin* 

sinl cos^ 

Uv^l 

n • 
</w+j? 

(2a, -pto&B, -painS) (8) 
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k.   The unit vector r" in the direction of propagation of the 

reflected wave. 

Using the standard vector expression for the lav of reflection, 

vis. 

r" • r*-2(n-r')n , 

have, with equations (6) and (8), 

( ^  -e^costy>sin*-d) 
r" - 

^•^- -e^^dsin^d* 

2(' g   -2ae-f3,+/>dsin0)(2a,->pcoa$,-pai.n$) 

(9) 

i    (10) 

or, performing the operations and siaplifying, 

[(fMa*f J»ae(/9
>-4a*)-l6aadpsin^coB»(2pdBin^.4ae), 

(»*a*y)      7( ^*    -e)* +^-2f dsin^d* 

flsing(2/)dsinMae) -d(^V»aa) ] 

(10') 

With 

r" - (*%,*), T?{pt$), t5{pt&  ), 
where the X are direction cosines of the 

unit vector r" in the direction of propa- 

gation of the reflected wave, 
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we n»ve the direction cosines of the lines asking up the congruence 

vhere 3 .-. (^* -ef+^-apdsinfl+d* , 

end vlth the reference surface 

1,  .»   (f-b* 

z3 (/>,*) -/osin^ 

(1) 

we have defined the norasl rectilinear congruence generated by the 

reflected rays. This any nov be used to determine the caustic 

(focal) surface and other properties of the reflection. 
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A* SSI BBS DI8TRIBUTI0B (KKLA7IVS PHAfig FBBCTIDH) OH THB FOCAL PLABB 

The task which we vili require of the congruence defined by the 

equations (11) end (1) vlll be to determine the trace of the rays on 

the focal plane and the expression for the relative phase on the 

focal plane - the relative phase function. 

1. The trace of the intersection of rays with the focal plane. 

The firet step in obtaining the trace on the focal plane of 

the reflected rays it to deteraine t the distance along a reflected 

ray from the paraboloid to the focal plane. If we wish to find the 
12 5 

coordinates y ,y ,jr of points a distance t' along a reflected ray ve 

obtain them as 

y1 - x^t'X1, (i - 1,2,3) (12) 

where z are the rectangular coordinates of a point on the paraboloid 

from which we start and X are the direction numbers of the reflected 

ray along which we measure. Thus the value t' • t for which we will 

arrive at the focal plane should be determined by setting y • 0; 

that is 

x'    ^-4a»        MW+/J*)S*  
tm"WT" "HjT- ' (/a^a^-iae^-lMi^-loa^dsin^ ' 

where 3 .«. ( r!j^» -ef •^>*-2pdsin^d2' . 

(13) 

The intersection y of the rays on the focal plane are then 

y1 - xW, (i - 2,3) 

or letting y2 • y, y* • z,  for convenience, 



PARK MATHEMATICAL LABOBATORKS, INC. 

CONCORD, MASSACHUSETTS 

10 

THE FOCAL FLAKE 

y »pcos*+fcos* (^ffii jJel^jffilllZfy&Mine . 

[z -pa 
d(^-l6a") 

or elaplified 

.*.»._*>* 

?" 

in* 

(1*) 

((5*+W*r -4ae( (jUa1) '-loa^dsin* 

i 2      3 
or in terms of x , writing x„ • x , x, • x , for convenience, 

(xi+xJAa*-) (xN-x?+W--2dx,) 
y " xa(x*+xf^as)»4ieTxj?xJJ»a*)-iE>aadxs 

(xj+xj+4a») (xj»x*-<4aa--2dx.) 
" xa (4+x»&aV J*ae(xj+tf-4a^) -loa»dx, 

 d(x^2x;x;->-x1-l6a<)  
(x*+x£-»4.a*r 4ee(xJ+x*-4a») -i6aadxs 

2. The relative phase function on focal plane 

The relative phase A is given by 

(15) 

(16) 

A-V^-Jf i  v^re c 
f 

k 

.•. velocity of light 

.«. the frequency 

.•, the phase 

.«. the propagation constant 

(17) 
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and, since A is just the distance froa the point source to the focal 

plane along a ray, ve have 

A - t • |r5| . (18) 

And, since Sfa- |rJ, 

A * S    ' (^a^U^tpWJ-lUVdBlng     * 

Simplifying this ve get 

or in terns of x2>x. 

A(x4,Xj) »       •(x,-e)*+x;*(x1-dr • 
f8a*(xj+x»+4a*) Aae(x»+xl-l»aa) -l6a»dx, "I 
tTxf«fOTT -W(xi+x3

a^a*)-i6a'dx3 }. 

(21) 
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B. HBRIVATI01 OF THE POWER ggggg FOR Tjg BSLATIVE PHASE FG8CTI0H 

1. Flan of attack. 

The problem of expanding A (y,*) as a power series in y and z, 

the Cartesian coordinates on the focal plane, is complicated by the 

difficulty in inverting (16) to get x- and x, as functions of y, z. 

This inversion is theoretically possible but to date we have had no 

indication of a vay to accomplish it. 

Another approach which is perfectly sound and possible is this. 

First expand y and z as a power series in x» and x. 

[: t • b. *ba xa+b, x, •h„xt+b„xax1 +b,^t-|.  (22) 

Then using a predetermined number of terms revert the series, that is 
obtain the coefficients of the series for Xg and x, in terms of y and z 

C 
s2 •e* •***•*» *•*•**"*****«»•*•  (25) 
*3 - f.^*y+f,***Uy*^>y«-*,»«**  

and with this expansion determine the coefficients of a series in 

y,z for  A(y,*). 

It can be shown that the series for A (y,z)  thus determined will 

be correct to the degree that (22) and (25) are expanded. 

Although this scheme is theoretically sound and actually possible, 

the work involved is algebralcly tedious. Our actual attack is 

what different though based on the same principle. 
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2.    The expansion of   A » the relative phase function, in a Taylor's 

series symbolically. 

For convenience ve adopt the suwation convention, viz. 

o^x      .«.     SofjX1    .-.   <x;x,<»•*ixa•<*Bx
,,  (i - 1,2,3) 

and return to the notation y • y, jr • i and x • x_, x - z,. 

Then the power series expansion of A. (x (y") ) •  A (y*) aay 

be written 

vhere the subscript aero vlll denote the value at y » y , y5 - y3, 

the point in the focal plane about which the expansion is aade. In 
2   3 

our case we choose the point for which x • x • 0, at which A is 

analytic. 

Then 

Thus we have 

^^,^-2.3; 

(25) 
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or without use of the svnsaation oonv»«+l«n 

A(y,») = A.+ |^(y-y^+|^6r-«0+^ -^fCy-jJ* 

+ %$(r-ti(**.)+j;^*S+j;2ft(y-yS   (26-) 

bat 

(•) 

(*) 

(c) 

aA    aA a*i 

3*A    _ d*A ax'  ax-* . aA_ aV 
(27) ^-Q7»   ^x-ax3 ay" ay» T a*' ay"ay* 

a*A     _    <a*A      as! *»J **k i   ^ !"*»' 9xJ. a«; aV 
dfdyVy*' asdjd** a/< ayfl v   ax^L*^ V V * V 

i 
(  av_i«i| , aA  aV 

^j>,*.^^2,3) 

which aeans that ve must know the partial derivatives of the x with 

respect to the y* (i,oO 2,3). These we eaaaot calculate directly 

because of the form of the expressions for the y", as mentioned above. 

3. The partial derivatives of x~ and x, with respect to y and z. 

As ve saw in the previous paragraph our expansion depends on the 

calculation of the various partial derivatives of not only A  but 

also of the x1 with respect to the y" (i,oC- 2,3). Taking the latter 

problem first, we have by definition 

(*)   f*** J,  -|J-  +j* > v*»" *\- o otherwise 

/M     _<*V    - ^ -    ay-    a«- _<v a»*      a-v" f ^v is! 
<C;    JyVy'Jy*    "        "and A)**   3/1 Jy' <*y« "**   <**•<?»' |a*V <V 

ay    3xj . dx'   a\j n. ay-   aV  
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which are equations linear la the highest derivative, and the sole 

condition on their eolu ion la that the Jacohlan doea not vanleh, 

which la eatiefled here. Thus we hare syateas of equations which, 

when solved in order, are linear In the derivative sought, Written 

out without the subscript notation and avaaaation convention (where 

(a) 

00 

dy 

y,Vy»x»y 

«*V*'x,y 
(29) 

(a) 

(b) 

(c) 

{:: 
{:: 

Sa*^2X, V******** x*w+y» x»/ 
v^^svv;^ *vz*x*» 

s» V»+y*» V-^WV^WVV* **>/y* x*^ 

S^*2^ We%<*% xVy, **. 

(30) 
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(a)< 

(b) 

1^ fy^*Z,x
3>-f5y3Sl^+yS}Jx^3yttx,ff x2/ 

•W^VV^^'vV^ V7« Xjw 2mxi+5*mxJxly+5*wxl)x^+zf?J^3^xly?xA)r 

•Sy.^x^x^c^^x^+y.x,^ x, 

(c) 

(d) 0 • z 

ym«^Xu»(<^*2vWS)*y^(x*V^Ax^ 

•y*^^V3^(x*»^Vx*«V*y'»s»»Vy* Wy» ** •ny 

(3D 

+s«xiv2[v^^+^»(x^A'fx*«3C^+vtiy*
xJ»1 

Equations (30) should be 8 equations in 8 unknowns and equations (31) 

should be lb equations in 16 unknowns; the synnetry of the cross 

derivatives eliminates two equations in (30) and 8 equations in (31). 
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In order to solve equations (29), (50) and (31) we need expressions 

for the partiala of y and z with respect to x« and x,, which are a 

direct calculation in the sense that we can differentiate equations 

(16) directly. This involves the successive derivatives of a quotient 

and, since there seems to he no table of such a procedure - elementary 

as it may be - we have included such a table of derivatives up to the 
1 

fourth order as an appendix to this report in two forms. 

1) See Appendix A 

It. The partial derivatives of y and z with respect to x? and x,. 

Writing equation (16) as 

y - xxQ 

z • x3Q • R , (32) 

where 

r f (xj+x^a*; (xt+x^a^-adxi)    
Q    •"•    [ (x'+xJ+W1)*!-*VeTx**xJ-W1) -16a*dx8

] 

n f d(xl+2x£x»+»?-l6a<) , 
R    *•*    l (xi+xMa^J^JlaejXxi Jta1) -loaMx,1   ' 

we have for the partial derivatives of y and s with respect to x and 

x. the following expressions: 
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y*» 

'*> 

'»** 

y**» 

IM 

'MJ 

"*» 

"M 

'Ul 

*M 

J»* 

S»i» 

Q* x*3xl 

*dx, 

•Is- 5*7 

ag 

3S«^ 

*# 

ao .^•A 

(33) 

(34) 
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In order to evaluate these partial derivatives of y and s at 

(y0>O> we seed the evaluation of the partial derivatives of Q and 

R at <yo'V* Lettln« 

D 

ve first have, for the values of H, H' and D and their partial derive- 
tives with respect to x? and x, at (yo,xo), the following expressions: 

N    1^ - (xl+xj+fca1-) (x*«*^a*- -2dx,) j^ - 16a" 

**   L>." 2xi(x>x,*+4a*-2dx,)*2xll(x*+xJ*4a*)|^- 0 
N»   k." 2x,(x*+xJ+Ua*-2dx,)*(2x5-2d)(x^x*^a^)|4i#- -8aad 
Ntt !,. » 12xJAx*+l6ax-»wbts|.<(- lba1 

"sL'Vi^L-0 
N« I.   - 12x*+4x*-12dx,+l6aa|    - l6a*" 

»«,!...- 8x,-i«i |,#- -Ud 

N3»L-2l+x»-12dl.,*- -12d 

(35) 
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K 

"ii I,, 

I,. 

I* 
IM 

I, 
I 

"k  I,. 

D« I,. 

"«*i L 

»- L 

d(x«*2j£4+x« -16a' |    - »l6a4 d 

4dx;+4dx,x*|..-0 

12dx**UdxM    • 0 

8<*x*x,|.#. 0 

^dx^dx*^,- 0 

JfcdxJ,.- 0 
8dx,|.#-0 

8dxa|#,-0 

2kdx 

(56) 

* '*» 

(X*-H£+W)* -4ae(x^-i*a*)-l6axdxJ #. l6a*(a+e) 

Ux*-»4x,xf-fl6x,ax-8aex,| « 0 

»*x/*4xfx,+l6x «1'-8aex,-l6a1(i L - -loaad 

12x*-i4x*+l6a*-8ae |„ »3a(2a-e) 

Q^x, L.- 0 (57) 

12xj44x**l6a*-8ae|M« 8a(2a-e) 

**.l,.-0 

8x, I,. - 0 
8x*l,.-° 

Using these expressions in the table of derivatives of a quotient 

found in Appendix A we obtain, somewhat laboriously, that 
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Q. - 
a 

s*e 

4§t- ° 

•57f * 2a(a+e)* 

**. 0 ax^dx, 

Txf •  2a*(a+e)» 

R. - V*o 
9R. 
axt 

a  0 * 

*R. d1" 
Jx, (a+e)x 

^x .  i <2*-*> 
«>x* ^(tte)1 

a*R. •     -    0 

(58) 

Ux*    2a(a+e)* 

<?x* 

dX     d*(2a-e) 
^x»3x7 " ax(a+e)J 

^x^xj 

^'R,  3d*(2a-e)(a»e)-6d4 

-57f rs^F 

With the above values for 3 *nd R and their partial derivatives 

at x_ • x, • 0, ve can nov obtain the value of y and z  and their 

partial derivatives with respect to x2 and x, at x • x, - 0, which 
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y.     -o 

a 
J*»- a+e 

y.,    -o 

y._.   - o 

y-« 

x...  - o 

(a-« 
**e (39) 

p*» 

y.. 

y"-»* 

•itt 

9e 
2a(a+e)* 

5ae(a+e)+2da(a-e) 
2a*(ate)»      

3c .^»     (a-e) 
2a(a^?   ** a^a+eP 

*-,.,  " °  • 
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a 
~a*e 

d*-a» 
"  (a+e)* 

,(2a-e) 

(a+e) " (a+e)" 

-*» 

(Ua-3e)(a+e)d-Ud» A^a-le) J Ma+e)* d2aTaSr " 
2d» 

a(a+e)*" 

z.  • 0 

3ae(a+e)+2d»(2a-e) _   >e   .^ (2a-e) 
z*«i "  2a»(aie)»   " 2a(a*e)a ^(a^e)* 

^ 

MS 
9 ae(a+e)*+6d*(3a-2e) (a+e)-12d* m 

' 2a"(a+e)* 

9e    M*(3a-2e)    64* 
2a(a+«J* * a*(a*ej" a»(a+e)« 

(1*0) 

5. The value of the partial derivatives of x„ and x, with respect to 

y and z at (y_>0 • 

With the values for the partial derivatives of y and z with respect 

to x„ and x, at x? • x- - 0, aa given in expressions (?9) and (Uo), we 

can now simplify equations (29), (50) and (31) and attain the deriva- 

tives of x? and x. with respect to y and z at (y ,z ). Taking account 
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of only those derivatives of y and z with respect to x? and x* which 

do not vanish at x? • x, • 0, equations  (29),   (50)  and (31)  become 

(dropping the subscript zero   with it understood, froa here on that 

all derivatives stand for their values at (y ,z )) : wo* o" 

4 

1    •   y» * *y 

o 
l 

0 

0 

0 

0 

0 

c 

0 

0 

23S 
Z3X1» 

Xu^y^j^+ya xaya 

ztxh*     ' 

Z.X. 
*   *vyy 

>« Xa«i« 

y»« **V2y«x*. Vy« V*-+y* x*»- 
z,x_ 

(M) 

(^2) 

(43) 

Solving (4l),   (42) and  (43)   in termai of the derivatives of y and z 

with respect to x0 and x, evaluated at  (y sz ) we have 
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y* 

X*s  - X3y  - ° 

^ 
1_ 
2, 

M. I. \ 

x2^  " xi=* " xa , * 0 *yy    z2*    3y» 

'8* '» 

h   --Sfe- 

*w   *,ya* ' 

(*5) 

k*y« •-!*"&•$? 
• m *-w. • S- " X*w * ° 

Xl». " " if" +^ 

>*--^r^^y? 

(W) 

If we put the values from (39) *nd (1*0) into these equations we 

then obtain expressions for the derivatives above, which, although 

unnecessary to the actual calculation, are useful as a means of 
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checking and facilitating the calculation of the partials of A with 

respect to y and z. Thus we have for the non-sero partial derivatives 

of the x   with respect to the y* 

r 

w 

k»y 

a+e 
a 

d(a-e)(a+c)T 
x*y«   " 2a*(d"-as-ae) 

9e(a+ef       3d* (2a-e) (*-e) (a+ef 

?e(a+ef      dx(a-e)(a»er 
XV» * " 2V(daU*-ac)*     " 2a*(di-e>-ae)»   * 

d»(*-e)C»a-?e) (&+«)*     A d4 (a-e) (a+e)3 

ia*(a»-a»-ae)'     '      + a'(a'-a*-ae)» 

(1*7) 

*„s cTx 

test 
(d^a'-ae) 

< 

Jyy 

l*M 

*y*« 

d(2a-e)(a+e)» 
2a'(d»-a»-ae) 

2a(d"-ai-ae^ 

" ^'(d^-a^-ae)* 

i*a«(d"-a"-ae) 

0* 

2d' (a+e)' 
" aUQ1-* ae? 

d* 
2a 

a+e 

(2a-e)(a+e)4 

'(d^-ae?     " 

d*(2a-e)(a+e)* 
* a4|dc-a4:ae}» 

'SI* 

K 

2a(d*-a*-aep aB(d*-a»-ae)« 

6d4(a+e)« 3d*(W-3eJ*(a+eJ* 
a*(d*-a*-aej*' " W(d*-a»-ae)»'      * 

6d* C*a-5e) (a+ef     12d»(a+e)" 
aMd'-a^iae)'     " «•(**-«*'—)» * 

<*8) 
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6. The partial deiivatives of relative phase function with respeet 

to the paraboloid coordinates. 

The next step in obtaining the expanaion of A in & Taylor's 

series about (yo#*J 
i9 ^be calculation of the partial derivatives 

of A vith respect to y and s. evaluated at (y ,z  ). Because of 

the f orra of equation (21) this is not directly possible, rfe mist 

therefore do the calculation via equation (27), vhich requires the 
derivatives of A with respect to x2 and x-. Put equation (21) 
in the f on 

A-S*{jj|  -SiT (*9) 
where M - 8a»(x*+x^-»4a1)-Uae(x2+x*-4a*)-l6a*dxJ 
and again 

D - (x^+x^a*)1-Uae(x*+x*-4a*)-l6a"-dxf. 

Then if we write  A *££.    f    A «_£A_ f s^.# ^ ^^ 

A-JVv* 
A 1 TS. ar'ViTk* T.3 '/a. (50) 

A -     1 3'3-*T * 1 "ML * x IiiL     x 1*!L- ** s* 

A^- I S'fyy - £ Tl8t3^^VTi3>3fc   - J T3; 3^Tfl^T3ta> 

(i,J,s - 2,5)   . 
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•ad we need to evaluate toe partial* of S and T and consequently the 

partial* of M, the numerator of T - the denominator, D; being the sane 

as that of Q and R in equation (32) ve can use expressions (37) for it. 

The value of M and its partial derivatives vith respect to Xg and x, 

at x. • x. • 0 are then 

M 1^ - l6a»(2a+e) 

M2 i,.-l6a»xa-8aexj,#- 0 

M, |. # - 16a* x, -8aexs -16a*d 1^0 - -16R*4 

MaJ.'#- lSa'-aaeU.-8a(2a^} 

**« I,. - o 
M„ |##« l6a*-6*ej • 3&{2&-e) 

"m  "".a, -"„.  "*,,*  -° 

(51) 

and vith these values, expressions (57) and th_ table of derivatives 

of a quotient found in Appendix A, ve have for the value of T and its 

partial derivatives . t. x^ • x- • 0 

T • 
(e*e) 

T* • 0 

T, • 
d 
(a+ej* 

T - 
(2a-e) 
2a(a+e)r 

T • 0 

T Si 
^d8-            2a-e 

a(a+e)'       2a(a+e)* 

T m 0 

T 
9i» 

m 
2a -e 

V(a+e)» 
T m 0 

T.- m 
6d»          5d(2a-e) 

'52) 
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and ttoe value of S sad its partial derivatives vith respect to 

JCj and x. at x. « x, • 0 

S        1^- (a+e)*+d* 

S,        I,. - t^i**   - S|L +2(x.d) |M. .2d 

Q        s    „ 3x*»xS-U>*     e .9|        »-e 

S„    U.-2^l,.-o 

8„*   L.-£r U.-0 

Using (50) and (55) and (52), ve have for the values of j\   and 

its partial derivatives vith respect to x2 and x, at x. • x, • 0 and 

letting S*|M- s, 
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A. 
A4 

A, 

As» 

A« 

A„ 

Aw 

A 

* 8 
2a+e 
a+e 

d(d«--a*-ae) 
(a*e)*s 

ta<^)« " 2a(a*er s 

(5*) 

u« 

A m 

A„," 

- d*(g*»c) , d»(2a-^e)   e        2d4 

(a+e)s»  * 2a(a+e)ks " (a+e)s   a(a*e)* s 

0 

d(2a+e)(a-e) d(3a-2ej  _ d'(2a-ej   _ d(2a-e) 
2a(a+e)s» 2a(a-fe)*s "  a*(a+e)' s   a*(a+e)s 

o 

3d3(2a*e) 3d*     3d(2a*e)(a-e)  3d(3a-2e) 
(a+e).,' " (a+e)1*1 + 2a(a+e)P  + 2a(a*e)*s 

3d(3a-e) _ 3d»(3a-2e)     6d' 
a*(a+e)e " a*(a+e)' s   a*(a>fe)4 s 

7. The value of the partial derivatives of relative phase function 

with respect to the focal plane coordinates. 

We are now in position to calculate the partial derivatives 

of A with respect to y and z, which are the ones required for the 

expansion of A in the Taylor's series in y and z. Writing out 

equations (27) without the sumnation convention and with y • y, 
3     2 5 >K 

y • z,  x » x0 and x • x, also x » ^*-  , etc. 
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A, - 

A.  - 
A,y- 

Ay« » 
A« • 

Aw- 

A„.- 

A, 

AM.« 

• A.   X, 

X^x«r 

A ,  X2y • .%, ^Jy 

A„ x^-2 A„ x^ xJy*An x*+ rta x3^ A, x3yy 

A» W* A«(WVJ* A»> V»/ A* x*** AJ  x»»« 
A„ xj^2 A„ x^ A„ x& A. x,tt+ A3 x,M 

A»x», +5 Aa„ xJxy-3 A,„ xiyx* + A,„ x;y +3 Aia 

•3A„ (x^x^oc^x^oA,,     x^x^ • Aa x,^ A, xtyry 

A„»x^ Aw (^x^x^* A3S2. (fcy^jy*^       (55) 

•Aw x^ A« (2x,*vxV^+A*'(^VV^>*V3Vt* 
•%xJ*A„   (2xlr8V

x*yxA)4A» x*yy**   A»   x»yy« 
A^x^. Aw (ax,^*^**^)* Am(2xJixJ|xJll+x*x^) 

• AMI xj^ AXA(2xJwxtt-fx^xJy)+ An(2xafBxi*2x3imx3m 

•x^x^x^)* Aw(2xfr,x%*xSMxJ(r)+ Aa x^* A3 xtgMy 
A» x,V3Am x^+jA,,,^,^ A^x^jA^x^, 

•3A1!(xttyxtog+5/l,Ix4|xfc+A,x^ A, x,„,    . 

Rewriting these equations with only the non-zero terms ve have 

Av - 
A _ 

Ayy 

A,. 
A„ 

•Aflrt 

AMy 

AB„ 

o 

A, x,# 

A„xf^A, x,yy 

0 
A»» x$/ A, x,M 

0 
Am^J*2Aax1^+AJ>xvV   /\,    x,yyM 

(55') 

AmxJ/5A„    x^x,*    A, x, 
*mt 
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Then lifting thes v«l«©&   -r the partials of x« and x, with respect to 

y and z of Mtywttoas  (***>),  (**$) and (V6) we nave for the non-zero 
derivatives? abov* 

A, 

k*r 

A 

.A, 

A, 

A 
** JiL 

*? (56) 

Using either (55"), (5*), (V?) and (k6)  or (56), (5*0, (59) ftnd 

(1*0) we can obtain the values of the partial derivatives of A. with 

respect to y and %  at (yQ»*0) as the following expressions, in which 

s -  </a*e)* +d*  and A - (d*-a*-ae), 
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dA 
&y u 

m d 
* • 

e(a+e) 

0 
(57) 

"^JT 
£>/\.       d(2a-e)  (a+e)* re . d»(2a+e)  d*, d(a-e)(a+e)3 

[i . (2»+g)(a»e) j 
8 8 

*»A. 

3*A. 
^P 

3d(a-e) (a+ef fl  (2a*eHa+e), cr3d(a-e) (a»e)
4 , 

• A      B S * _ 

We are now in a position to perform the expansion of  A. (y>z) 

in a Taylor's series in y and z about (y ,z  ) • (0,—-- ) up to the 
o o       are 

terns of the third order. 



PASUS MMKBMATICAI. LABOKATTNUKS, Inc. 
COfcOCU?. MASSACHUSETTS 

THE FOCAL PLANE 

8. The relative phase function as a power series in terms of the 

focal plane coordinates. 

Writing equation (26) without the summation convention and with 
2       3 y » y and y • z we have 

and with the values for the partial derivatives as given in equation 

(57) we have 

' b("        g^     M7*°f {     (l'°-^>e^e)•'td^^       • 
.. _ d»     t»(2ye)), U^Kl . (g.«)(We)     a.. 
vs      as s*      J      za    ls s* asJ 

•.*[i*i25JSli2t2]L]J   •  
S"     R 8* J 

Thin series is being verified by actual computation. The results will 

be reported separately. 
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APPENDIX A 

DERIVATIVES OF A QUOTIENT 

A -1- - * 

(«),. y.. *JL . «g.. s^ ^. g*. asa^m .£*$. 

(& - E* -3^" "^ **# -^ ^ - T 

N*      3NfcD,+3N,Dii*NDa-  . ^ND, P.- +H, D*     ^NDf 
TF 

Niji      NiDj tg, Dj »2NQD. •NJ Da •NDaj        *»Ni Pi Dj +2Nj D*+2ND;.Dj 
• D D*- ^   ''   " D» 

•*HIDi D«       /-ND* D; 

%)« 
- gs . l&fjJL .gN^ +12N|Df _2l|Nj^ ^.JU^ jJfcDs 

-56^ +6^ ^8^ ^ ND;i. 

Niu.        »»N3i D;»6NnDi;->4N,Pa +HDft,      A 12N;. D?»2»»Ht Pi D; •&P. PS+6ND' 
" 5 D*         *       D* —  

2*«iDf^56NDTDi, j0llND? 
"IF" •2 *9r 
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•8*J£2L ^J**!^ -ia^ *2^£ ^LLg^SL. -is&gPi- 

.afaP?+8»sP.- ft •2BaPf+8l,- Pgft +4l. Dj Dii+4Ki DiDj+6H D.Pg4JWIPw PJ 

•4HD*j »gg P.; Dj •^•HD.Dijj        12W; D, DJ+12Wj D^Dj •6HDwD*+6lg)i,D*' 

+g*»M),lD,DJ-   ^'i"-?* 

+&*pJ- +&%& +£%pL ^iBiiL .i^i^L 

-    5L£S -    SS gHD.M    Dj 

Nwj_ _ If a Dj-»3ll8> Dj+3iii Dij ONijDj^^WiDa •NiDi, •WD«)j 
D      " D" ' 

t6Wit Pi Dj +6WijDi -f 6»; Da Dj +12Hj Pii D; +6Nj DH DJ +2STO ;i. Dj -»-6HD^D; •f6HD,i ftj 

. l8Ni tf Dj +6Bj D* •IflWD^Di Dj •iSMDijD*      glJPlSi 
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